
Math 310 Numerical Analysis (Bueler) November 11, 2017

Assignment #9
Due Thursday, 16 November at the start of class

Please read sections 5.6–5.8 of the textbook (J. Epperson, An Intro. to
Numerical Methods and Analysis, 2nd edition).

Section 5.6, pages 297–299: I recommend doing exercise 1 (a),(b) at the command
line, so that you become familiar with the numbers. Then do P11 below, so that you
have a tested code. Then do exercise 2 (a),(e) using your code.

• Exercise 1. Do parts (a),(b) only.
• Exercise 2. Do parts (a),(e) only.
• Exercise 11.
• Exercise 13.
• Exercise 15.

P11. Write a code gauss4.m with first line
function I = gauss4(f,a,b)

which applies n = 4 point Gauss quadrature to approximate
∫ b

a
f(x) dx. There are

two things you will need from the book, first being the change of interval formula
from the bottom of page 294 (and exercise 15 above), i.e.∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
a+

b− a

2
(z + 1)

)
dz.

The second thing is that you will need the n = 4 nodes and weights from Table 5.5 on
page 289. Test your code on integrals of the form∫ b

a

xk dx

for several different combinations of a, b ∈ R and integers k = 0, . . . , 7. The code
should get all of these exact. Then test on

∫ b

a
x8 dx; it should not be exact. (Thus confirm

that your implementation works and has the promised degree of precision p = 2n− 1 = 7.)

P12. This problem asks you to implement the “Romberg integration” described in class.
Recall that Romberg’s idea was to extrapolate the results of the composite trapezoid rule to
otherwise-unattainable h = 0 spacing. Recall that trap.m is posted online:

http://bueler.github.io/M310F17/matlab/trap.m

(You can also use trapol.m. ) For the integral
∫ b

a
f(x) dx, it computes the composite

trapezoid rule with n subintervals: Tn(f) = trap(f,a,b,n).
Write a new code romberg.m which does K-level Romberg integration:

z = romberg(f,a,b,K)

http://bueler.github.io/M310F17/matlab/trap.m


2

It does K composite trapezoid rule applications by calling trap.m:

T2(f), T4(f), . . . , T2K (f).

It also calculates the corresponding spacings,

h1, h2, . . . , hK .

Then it uses polyfit to compute the polynomial p which goes through the “data”

(h2
1, T2(f)), (h2

2, T4(f)), . . . , (h2
K , T2K (f)).

Then it evaluates this polynomial at zero to give the result:
z = p(0).

Compare accuracy of gauss4(f,0,2) to trap(f,0,2,2K) and romberg(f,0,2,K)
for K = 2, 3, 4, 5, on the integral ∫ 2

0

xe−x dx.

(Start by computing the exact value of this integral.) Compare both the accuracy and the
number of function evaluations in a table.

(The table should have 9 rows, one for each calculation, and columns for the absolute errors
and the number of f evaluations.)

P13. EXTRA CREDIT.
Explain how to optimize romberg.m to
• eliminate all redundant function evaluations, so that it does exactly 2K + 1

function evaluations in total, just like T2K (f) itself, and
• minimize the amount of arithmetic in the extrapolation stage.

For the second optimization you may want to use divided differences. (Do not call
polyfit or any other polynomial interpolation code.)

Then implement your method and check it produces the same results as romberg.m.


