Assignment #7

Due Thursday, 2 November at the start of class

Please read sections 2.5, 4.8, 4.11, 5.1, 5.2, and 5.3 of the textbook (J. Epperson, *An Intro. to Numerical Methods and Analysis*, 2nd edition).

Section 2.5, pages 74–78: For these problems I recommend first turning Algorithm 2.5 into an (easy!) MATLAB code with first line "function z = trap(f,a,b,n)."

- Exercise 1. A great problem for verifying your code. Note that "How small does *h* have to be ..." requires additional thoughts and writing, not just running the code. (Ditto for following problems.)
- Exercise 6.
- Exercise 8.
- **Exercise 9.** This technique is called "linear extrapolation to h = 0".
- Exercise 14.

Section 5.1, pages 265–266:

- Exercise 1.
- Exercise 3.

Section 5.2, pages 190–191:

• **Exercise 3.** The corrected trapezoid rule is " $T_n^C(f) = \dots$ " on page 267.

P8. (*This problem gives the flavor of splines independently of the textbook. The splines here are less good-looking, but slightly simpler, than those covered in section 4.8 of the textbook. This problem is stated so as to make the indexing in* MATLAB *easy.*)

Suppose we have distinct nodes $\{x_i\}_{i=1}^{n+1}$ which are in order so that $x_i < x_{i+1}$. Suppose we have any data values $\{y_i\}_{i=1}^{n+1}$. I claim we can build *n* quadratic polynomials

$$p^{k}(x) = a^{k} + b^{k}(x - x_{k}) + c^{k}(x - x_{k})(x - x_{k+1}),$$

for k = 1, ..., n, on each subinterval $[x_k, x_{k+1}]$, so that

(i) $p^k(x_k) = y_k$ for each k = 1, 2, ..., n,

(ii) $p^k(x_{k+1}) = y_{k+1}$ for each k = 1, 2, ..., n, and

(iii)
$$(p^{k-1})'(x_k) = (p^k)'(x_k)$$
 for each $k = 2, 3, ..., n$.

Note that (i) corresponds to *n* equations, (ii) to *n* equations, and (iii) to n-1 equations, for a total of 3n - 1 equations. On the other hand there are 3n unknowns, namely the coefficients $a^1, \ldots, a^n, b^1, \ldots, b^n, c^1, \ldots, c^n$.

To uniquely determine a spline (curve) through the data therefore requires one more condition. One has to choose something; I choose

(iv) $c_1 = 0$

so that $p^1(x)$ is actually a linear polynomial. (Any choice here is awkward.)

(a) For concreteness, suppose n = 3. Write down the nine equations in nine unknowns which determine the polynomials p^1, p^2, p^3 . Explain how to solve these equations systematically, first by finding all the a^k , then all the b^k , and then by setting up a simple system for just the c^k . This system can then be solved by forward substitution.

(b) For the particular nodes $x_i = i$, i = 1, 2, 3, 4, and data $y_i = \exp(-x_i^2)$, set up and solve the system. Use MATLAB as needed. Print the nine coefficients a^k, b^k, c^k .

(c) Write a MATLAB code with first line

function [a, b, c] = quadspline(x, y)

which implements the above strategy for any n. It will check that the input arrays have the same length. It will get n from length(x). It will return arrays of coefficients; it does not plot anything. Test your code on the part **(b)** problem.

(d) Finally, write a separate code

function plotqs(x,y,a,b,c)

which plots the quadratic spline defined by the lists of coefficients a, b, c. Note that x, y are the same nodes and data which go into quadspline.m, while a, b, c are the outputs of quadspline.m. Your code will choose a relatively fine grid (e.g. at least 20 points) on each subinterval $[x_k, x_{k+1}]$ so as to plot $p^k(x)$ on that interval. Test your code on the part (b) problem.

P9. Start this problem by getting some grid paper with roughly 1/4 inch grid. (I googled "printable grid paper," etc.) Your hand will fit on a letter size piece easily. Trace the outline of your hand. Add 30 to 50 *roughly* equally-spaced points along the outline, especially including tips of fingers and saddle points between fingers. Number these points to keep track. Let *n* be the number of points minus one.

At this point my result looked like the figure at right, with 36 points and n = 35.

Write down, in an editor so you only have to do it once, the (x_k, y_k) locations for each point. The numbering can be regarded as *t*-values, namely $t_k = k$ for k = 1, ..., n + 1. Now we have two functions x(t) and y(t), both sampled, which define a parametric curve for the outline. That is, x(t) is approximated by pairs (t_k, x_k) and y(t) by (t_k, y_k) .

Now use the built-in functions spline and ppval to draw a cubic spline that is the outline of your hand. You will apply spline twice, first to the (t_k, x_k) points and then to the (t_k, y_k) . However, when you plot you only plot the (x, y) values.