Worksheet

Suppose that the IEEE 754 standard discussed in Chapter 5 of the textbook had a 12 bit version. It might look like this:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline s & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} \\
\hline
\end{array}
$$

If 12 bits were organized this way they would represent the number

$$
\begin{equation*}
x=(-1)^{s}\left(1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}\right)_{2} \times 2^{\left(e_{1} e_{2} e_{3} e_{4} e_{5}\right)_{2}-16} \tag{*}
\end{equation*}
$$

Note that the case $e_{1}=\cdots=e_{5}=0$ is an exception in such a system: the string of 12 zero bits represents $x=0$.
(a) What is the largest number that this system can represent?
(b) What is the smallest positive number that this system can represent? (I.e. what is the representable number to the right of zero? Use (*) above and do not worry about subnormal numbers.)
(c) What is the value of "machine epsilon" in this system?
(d) With the rule that any bit string with $e_{1}=\cdots=e_{5}=0$ represents $x=0$, how many distinct numbers can be represented in this system? (Use (*) above and do not worry about subnormal numbers.) For comparison, how many integers could be represented with a 12 bit string, using the usual representation of integers?

