Worksheet: degree 4 numerical integration

(a) As warm-up, integrate:
$\int_{a}^{b} c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4} d t=$
(b) Build a degree-4-integrator code. It will approximately compute the number $\int_{a}^{b} f(t) d t$. It will do the following steps:
(i) generate 5 points t_{1}, \ldots, t_{5} in $[a, b]$, \leftarrow you can decide which 5 points you like!
(ii) set up the 5×5 Vandermonde matrix for these t_{j},
(iii) compute the coefficients in the degree 4 polynomial $p(t)$ so that $p\left(t_{j}\right)=f\left(t_{j}\right)$, and
(iv) return the exact integral $\int_{a}^{b} p(t) d t$ as the approximation to $\int_{a}^{b} f(t) d t$.

It will not call any MATLAB black boxes except "A\b". For instance, you cannot use vander, polyfit, or polyval. Fill this in:

```
function z = deg4int(f,a,b)
% DEG4INT Approximates the integral of f(t) on [a,b] using a degree 4
% polynomial interpolant.
% Example: >> deg4int(@(x) sin(x),0,pi) % exact = 2.0000000
```

(c) For those groups with a computer in hand, type in the above code. Test it on $\int_{0}^{\pi} \sin (x) d x$. Also compare to the built-in integrator quad.

