
Math 310 Numerical Analysis (Bueler; December 11, 2012)

Solutions to Assignment #9

Exercise 10.2. The individual functions ex and cos(πx/2) are a basis for the set of all functions
of the given form. We want the rule to be exact for ex and cos(πx/2) so that the linearity of the
rule will imply that it is exact for all of the functions. This is two equations in unknowns A0, A1:

f(x) = ex : e− 1 =

∫ 1

0
ex dx = A0e

0 +A1e
1 = A0 + eA1,

f(x) = cos(πx/2) :
2

π
=

∫ 1

0
cos(πx/2) dx = A0 cos(0) +A1 cos(π/2) = A0.

Thus A0 = 2/π ≈ 0.6366198 and A1 = e−1 (e− 1− (2/π)) ≈ 0.3979212. The resulting rule is good
for functions of the given form, but it is easy to check that it is worse for polynomials than the
trapezoid rule. It does not get all linear functions f(x) = ax+ b correct.

Exercise 10.4 (Extra Credit). (Sorry! This one was harder than I thought so I’ve made it Extra Credit
worth 3 points.) Let f(x) = 1, x, x2, x3 in turn. Write down this system of equations which we want
to be exactly true:

f(x) = 1 : 1
2 =

∫ 1

0
x 1 dx = A0 +A1(1)

f(x) = x : 1
3 =

∫ 1

0
xx dx = A0x0 +A1x1(2)

f(x) = x2 : 1
4 =

∫ 1

0
xx2 dx = A0x

2
0 +A1x

2
1(3)

f(x) = x3 : 1
5 =

∫ 1

0
xx3 dx = A0x

3
0 +A1x

3
1(4)

To solve this system of four nonlinear equations in four unknowns requires care. (Gauss’ insight-
ful indirect method—via orthogonal polynomials—guarantees there is a solution.) My technique
was to combine the above equations like this: x0 ∗ (1)− (2), x20 ∗ (1)− (3), x30 ∗ (1)− (4). Simplify
to get a new system without A0:

1
2x0 −

1
3 = A1(x0 − x1)

1
2x

2
0 − 1

4 = A1(x
2
0 − x21)

1
2x

3
0 − 1

5 = A1(x
3
0 − x31)

Now factor on the right sides: x20−x21 = (x0−x1)(x0+x1) and x30−x31 = (x0−x1)(x20+x0x1+x21).
Then we can eliminate the expression “A1(x0 − x1)” to get two equations in x0, x1:

1
2x

2
0 − 1

4 =
(
1
2x0 −

1
3

)
(x0 + x1)

1
2x

3
0 − 1

5 =
(
1
2x0 −

1
3

)
(x20 + x0x1 + x21)

The first of these can be solved for x1. Then substitute into the second. The simplified result is a
quadratic equation for x0: (

1
8 −

1
9

)
x20 +

(
1
12 −

1
10

)
x0 +

(
1
15 −

1
16

)
= 0.

MATLAB can be used to find the roots of this polynomial:
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>> roots([(1/8 - 1/9), (1/12 - 1/10), (1/15 - 1/16)])
ans =

0.84495
0.35505

Let x0 = 0.35505. Then we see by symmetry or calculation that x1 = 0.84495. Any of several
equations above gives A1 and then we get A0:

>> x0 = ans(2); x1 = ans(1);
>> A1 = ((1/2)*x0 - (1/3)) / (x0-x1)
A1 = 0.31804
>> A0 = (1/2) - A1
A0 = 0.18196

For an alternative method, I have posted a code which also shows how to use MATLAB’s “qr”
to find the orthogonal polynomial whose roots give x0, x1:

http://www.dms.uaf.edu/˜bueler/problem104.m

Exercise 10.7. First I wrote this code that does the composite trapezoid and Simpson’s rules:

trapsimp.m

function [ztrap zsimp] = trapsimp(n)
% TRAPSIMP Compute both the composite trapezoid and Simpson’s
% rule approximations of this integral --> /1
% using n subintervals. For example: | cos(xˆ2) dx
% >> [ztrap zsimp] = trapsimp(10) /0

h = 1 / n;
x = 0 : h : 1;
ftrap = cos(x.ˆ2);
ctrap = [1 2*ones(1,n-1) 1]; % coeffs for trapezoid rule
ztrap = (h/2) * (ctrap * ftrap’);

xsimp = 0 : h/2 : 1;
fsimp = cos(xsimp.ˆ2);
csimp = [1 repmat([4 2],1,n-1) 4 1]; % coeffs for Simpson’s rule
zsimp = (h/6) * (csimp * fsimp’);

Note that I captured the 1 4 2 4 2 4 2 . . . 4 1 pattern of coefficients in Simpson’s rule using the “re-
peat matrix” command. (Type help repmat .) Also I have interpreted the sums in these inte-
gration rules as dot products between coefficients and function values. A test is like this:

>> [ztrap zsimp] = trapsimp(10)
ztrap = 0.903121757123408
zsimp = 0.904524244850800
>> quad(@(x) cos(x.ˆ2),0,1,[1e-12 1e-12])
ans = 0.904524237900272

It looks like both methods are working, and that the Simpson’s rule estimate is much better, as
expected. (This assumes the quad result is exact. As instructed.)

http://www.dms.uaf.edu/~bueler/problem104.m
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Then I wrote this code to do the convergence study:
testconvergence.m

% TESTCONVERGENCE tests the convergence of the estimates from TRAPSIMP
% as we make h smaller

zexact = quad(@(x) cos(x.ˆ2),0,1,[1e-12 1e-12]);

fprintf(’(trap err)/hˆ2 (simp err)/hˆ4\n’)
fprintf(’------------------------------\n’)
for h = [0.5 0.2 0.1 0.05 0.02 0.01 0.005]
n = round(1/h);
[ztrap zsimp] = trapsimp(n);
fprintf(’ %12.10f %12.10f\n’,...

abs(ztrap-z)/(hˆ2),abs(zsimp-z)/(hˆ4))
end

Running it looks like this:

>> testconvergence
(trap err)/hˆ2 (simp err)/hˆ4
------------------------------

0.1399698023 0.0003675544
0.1402503248 0.0000187263
0.1402480777 0.0000695053
0.1402459925 0.0000820090
0.1402453011 0.0000854962
0.1402451985 0.0000860090
0.1402451727 0.0000861533

As a result we see that if Tn is the n-subinterval composite trapezoid rule estimate then∣∣∣∣Tn − ∫ 1

0
cos(x2) dx

∣∣∣∣ ≈ 0.14 h2

while if Sn is the n-subinterval composite Simpson’s rule estimate then∣∣∣∣Sn − ∫ 1

0
cos(x2) dx

∣∣∣∣ ≈ 8.6× 10−5 h4.

That is, the composite trapezoid rule is second-order and the composite Simpson’s rule is fourth-
order on this nice (i.e. smooth) integral. Because of this difference in powers of h, Simpson’s rule
is a lot more effective.

Problem I. (a) (I should have clarified that the “check” in this problem can be done as a MATLAB

program that calls the downloaded program hermquad.m.)
checkhq.m

% CHECKHQ check that the n=2 case of Gauss-Hermite quadrature is exact
% as expected on f(x) = xˆ0, xˆ1, xˆ2, xˆ3 in the integrals
% / +inf
% | f(x) exp(-xˆ2) dx
% / -inf
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[X W] = hermquad(2);
x = X’; w = W’;
exact = [sqrt(pi) 0 sqrt(pi)/2 0];
for p = 0:3
s(p+1) = sum(w .* (x.ˆp));

end
norm(s - exact)

Running it looks like this:

>> checkhq
ans = 4.00296604248672e-16

Which shows that the numerical method is getting the same results as the exact values (i.e.
√
π, 0,
√
π/2, 0)

to at least 15 digits.

(b) Doing the integral by our Gauss-Hermite method and then by quad gives

>> [x, w] = hermquad(6);
>> x’ % a look at these points (abscissae)
ans =

2.35060 1.33585 0.43608 -0.43608 -1.33585 -2.35060
>> format long
>> w’ * cos(x)
ans = 1.38038841005073
>> quad(@(x) cos(x) .* exp(-x.ˆ2),-20,20)
ans = 1.38038844704314

Assuming the second answer is exact, the Gauss-Hermite method with only n = 6 points is giving
8 digit accuracy.

The point here is that on the interval where e−x2 has significant size, the factor cos(x) is well-
approximated by a polynomial. Figure 1 shows the integrand on the short interval [−3, 3]. The
“bell curve” function e−x

2
decays very rapidly; note e−3

2
= e−9 = 0.000123 is already very small.

Thus cos(x) only needs to be well-approximated by a polynomial on (say) the interval [−3, 3], and
the six abscissae above (i.e. −2.35060,−1.33585, . . . , 2.35060) are adequate for that job.

Problem II. (The statement of the problem should have said “N+1-point Clenshaw-Curtis” quadrature.
Sorry about that.)

MATLAB is very well suited for this job. To do it we do need to know how to integrate polyno-
mials. Specifically, if p(x) = c1 + c2x+ c3x

2 + · · ·+ cNx
N−1 + cN+1x

N then∫ 1

−1
p(x) dx =

N+1∑
j=1

1− (−1)j

j
cj .

Using this form requires we reverse the coefficients produced by polyfit. I wrote this code:

clencurt.m

function z = clencurt(f,N)
% CLENCURT Use polynomial interpolation at N+1 Chebyshev points
% x_j = cos(pi j/N) to do the integral --> /1
% That is, do Clenshaw-Curtis integration. | f(x) dx
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FIGURE 1. The integrand cos(x)e−x
2

is very much like e−x
2

times a polynomial
because e−x

2
is so small outside a brief interval around zero.

% For example: /-1
% >> clencurt(@(x) cos(x),6)
% for which the exact answer is
% >> 2 * sin(1)

x = cos(pi * (0:N) / N);
p = polyfit(x,f(x),N);
p = fliplr(p);
c = (1 - (-1).ˆ(1:N+1)) ./ (1:N+1);
z = c * p’;

That’s the whole thing! To test it as suggested I needed to do this exact integral, which is by-
parts: ∫ 1

−1
x sin(x) dx = −x cos(x)

∣∣∣∣1
−1

+

∫ 1

−1
cos(x) dx = 2(sin(1)− cos(1)).

Now I test:

>> clencurt(@(x) x.*sin(x),4)
ans = 0.602182995236023
>> clencurt(@(x) x.*sin(x),6)
ans = 0.602337506553671
>> clencurt(@(x) x.*sin(x),10)
ans = 0.602337357879725
>> 2 * (sin(1) - cos(1))
ans = 0.602337357879513

That’s 12 digits correct, and pretty good for 11 point polynomial interpolation!

Exercise 11.1. (a) This one is pure integration. From “y′ = t3” get the general solution

y(t) =
t4

4
+ C
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Now use the initial condition to determine C:

0 = y(0) =
0

4
+ C =⇒ C = 0.

Thus y(t) = t4/4.

(b) All functions y(t) for which y′ = 2y are of the form

y(t) = Ae2t.

Then 3 = y(1) = Ae2 so A = 3e−2 so y(t) = 3e−2e2t = 3e2(t−1).

(c) Following the given advice you can start with

e−aty′(t) = e−at(ay(t) + b) or e−aty′(t)− ae−aty(t) = be−at.

Integrating factors help undo the product rule, thus:(
e−aty(t)

)′
= be−at

Now both sides can be integrated:∫ T

0

(
e−aty(t)

)′
dt =

∫ T

0
be−at dt

e−aT y(T )− e0y(0) = − b
a
e−at

]t=T
t=0

e−aT y(T ) = y0 −
b

a

(
e−aT − 1

)
y(T ) = eaT

[
y0 +

b

a

(
1− e−aT

)]
Finally, recognizing that T is arbitrary,

y(t) =

(
y0 +

b

a

)
eat − b

a
.

It is worth checking that y′ = ay + b and y(0) = y0.

Exercise 11.3. Though the problem does not give this hint at the beginning, note that y(t) = 0 is also a
solution. Substitution shows that y(t) = t3/2 is a solution:

3

2
t1/2 = y′(t) =

3

2

(
t3/2
)1/3

=
3

2
t1/2,

while also y(0) = 03/2 = 0. Applying Euler’s method requires noting f(t, y) = 3
2y

1/3:

yk+1 = yk + hf(tk, yk) = yk + h3
2y

1/3
k .

If y0 = 0 then for any h > 0:

y1 = 0 + h3
20

1/3 = 0, y2 = 0 + h3
20

1/3 = 0, , . . .

and so on. The Euler solution is yk = 0 for k = 0, 1, 2, . . . .
How is this situation possible? Notice that the existence and uniqueness theorem 11.1.2 does

not apply. If it did then it would say that this ODEIVP would have exactly one solution. But two
different solutions have been found. The numerical solution follows y(t) = 0 and not y(t) = t3/2.

The reason the theorem does not apply is that ∂f/∂y = 1
2y
−2/3 is not continuous or even

bounded at y = 0 (i.e. in any rectangle around (t0, y0) = (0, 0)).
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Exercise 11.4. Straightforward. Note f(t, y) = (t+ 1)e−y, t0 = 0, y0 = 0, and h = 0.1. For Euler:

y1 = y0 + hf(t0, y0) = 0 + 0.1
(
(0 + 1)e−0

)
= 0.1.

For midpoint method:

y1/2 = y0 + (h/2)f(t0, y0) = 0 + 0.05
(
(0 + 1)e−0

)
= 0.05,

y1 = y0 + hf(t1/2, y1/2) = 0 + 0.1f(0.05, 0.05) = 0.1
(
(0.05 + 1)e−0.05

)
= 0.099879.

For Heun’s:
ỹ1 = y0 + hf(t0, y0) = 0.1,

y1 = y0 + h
f(t0, y0) + f(t1, ỹ1)

2
= 0 + 0.1

1 + (0.1 + 1)e−0.1)

2
= 0.099766.

The curious might ask what is the correct value? This ODE is separable so we can get exactly

y(t) = ln

(
1 + t+

t2

2

)
=⇒ y(0.1) = ln (1.105) = 0.0998453349697161.

Alternatively I can ask ode45 to take as many smaller steps as it needs to get high accuracy:

>> opts = odeset(’RelTol’,1e-14,’AbsTol’,1e-14);
>> [tt,yy] = ode45(@(t,y) (t+1).*exp(-y),[0 0.1],0,opts);
>> length(yy)
ans =

14
>> yy(end)
ans = 0.0998453349697158

That is, ode45 took 14 steps and estimated y(0.1) ≈ 0.099845. We conclude that both midpoint
and Heun’s are great improvements over Euler, as is ode45 of course.

Exercise 11.6. See page 266 for the formulas of the fourth-order Runge-Kutta method. Here
f(t, y) = λy so we just start applying the formulas in this case:

q1 = f(tk, yk) = λyk,

q2 = f(tk +
h
2 , yk +

h
2 q1) = λ

(
yk +

h

2
(λyk)

)
= λyk

(
1 +

h

2
λ

)
,

q3 = f(tk +
h
2 , yk +

h
2 q2) = λ

(
yk +

h

2
λyk

(
1 +

h

2
λ

))
= λyk

(
1 +

h

2
λ+

h2

4
λ2
)
,

q4 = f(tk, yk + hq3) = λ

(
yk + hλyk

(
1 +

h

2
λ+

h2

4
λ2
))

= λyk

(
1 + hλ+

h2

2
λ2 +

h3

4
λ3
)
.

Then

yk+1 = yk +
h

6
[q1 + 2q2 + 2q3 + q4]

= yk +
h

6
λyk

[
1 + 2

(
1 +

h

2
λ

)
+ 2

(
1 +

h

2
λ+

h2

4
λ2
)
+

(
1 + hλ+

h2

2
λ2 +

h3

4
λ3
)]

= yk +
h

6
λyk

[
6 + 3hλ+ h2λ2 +

h3

4
λ3
]

= yk

[
1 + hλ+

1

2
h2λ2 +

1

6
h3λ3 +

1

24
h4λ4

]
,

as claimed.
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On the other hand we know exactly what yk+1 should be! It should be the solution y(tk+1) of
the initial value problem

y(t)′ = λy(t), y(tk) = yk.

Thus, because tk+1 = tk + h, we have the exact value

y(tk+1) = yke
λh.

Taylor series expansion of this exact value gives

y(tk+1) = yk

[
1 + hλ+

1

2
h2λ2 +

1

6
h3λ3 +

1

24
h4λ4 +

1

5!
h5λ5 +

1

6!
h6λ6 + . . .

]
,

Finally we can compute the error, and we see that the first power that does not cancel is the fifth:

|yk+1 − y(tk+1)| = |yk|
∣∣∣∣ 15!h5λ5 + 1

6!
h6λ6 + . . .

∣∣∣∣ .
As the book says on page 259, the local truncation error is 1/h times the first neglected term in a
Taylor series expansion for y(tk+1). Thus the local truncation error is

1

h
|yk+1 − y(tk+1)| ≈

|yk|λ5

5!
h4

which is O(h4) as claimed.


