Assignment \#8

Due Friday 30 November, 2012 at the start of class

In your solutions to all problems, remember to:

- show me your calculations,
- show me the MAtLAB code or commands, if used, and
- check that you have answered the question.

These problems are on polynomial and piecewise-polynomial interpolation. Refer to Chapter 8 of the textbook.

Problem I. (a) Find n so that degree n polynomial interpolation of $f(x)=\cos (3 x)$, using equally-spaced points on $[0,2]$, gives a maximum approximation error $\mid f(x)-$ $p(x) \mid$ which is less than 10^{-6} on $[0,2]$. (Hints: Use Theorem 8.4.1. You may use the in-class conservative upper bound method, "option 2.")
(b) Compute n again for $f(x)$ replaced by $g(x)=\cos (25 x)$.
(c) Use MatLab's polyfit and polyval to find the actual smallest n needed to approximate $f(x)=\cos (3 x)$ to within 10^{-6}. That is, for various n smaller than your result in part (a), actually evaluate the maximum of $|f(x)-p(x)|$.

Problem II. Let $f(x)=7-2(x-2)^{3}+x^{2}$. Consider 5 equally-spaced points on the interval $[-3,1]$, and suppose $p(x)$ is the unique degree 4 (or lower) interpolating polynomial for $f(x)$ using these points. Apply Theorem 8.4.1 to give an upper bound on the maximum of the approximation error $|f(x)-p(x)|$ on the interval. Now explain why the value of $|f(x)-p(x)|$ is actually obvious, and the upper bound you computed is not surprising!

Problem III. (a) At the bottom of page 198 is an inequality that describes the error from the piecewise-linear interpolant $\ell(x)$ for $f(x)$ on $[a, b]$. Suppose we have equallyspaced points $a=x_{0}<x_{1}<\cdots<x_{n}=b$ with spacing $h=x_{i}-x_{i-1}$. Then:

$$
|f(x)-\ell(x)| \stackrel{*}{\leq} \frac{M h^{2}}{8} \quad \text { for all } x \in[a, b]
$$

In this inequality we are assuming $f^{\prime \prime}(x)$ exists and is bounded by the number M, so that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in[a, b]$. Use inequality $*$ to find n so that $|f(x)-\ell(x)| \leq$ 10^{-6} for $x \in[0,2]$ if $f(x)=\cos (3 x)$.
(b) Suppose you need to compute approximate values of $f(x)=\cos (3 x)$ at x inbetween the interpolation points. In several sentences, explain which technique requires more computation in practice, using $p(x)$ from problem I (c) or $\ell(x)$ in part (a) of this problem. Assume that $p(x)$ and $\ell(x)$ have been pre-computed and stored. Do not worry about memory usage but do consider floating point operations.

Problem IV. Derive composite Simpson's rule as follows: Suppose $f(x)$ is continuous on $[a, b]$ and $a=x_{0}<x_{1}<\cdots<x_{n}=b$ are $n+1$ equally-spaced points with spacing $h=(b-a) / n$. Assume n is even so there are an odd number of points. Using Lagrange's form of the interpolating polynomial, give a formula for $q(x)$, the piecewise-quadratic polynomial interpolant on $[a, b]$. In particular, give the formula for $q(x)$ on $\left[x_{i-2}, x_{i}\right]$ for $i=2,4,6, \ldots, n$, and note that $q(x)$ is a continuous function built from $n / 2$ quadratic polynomials defined on subintervals $\left[x_{0}, x_{2}\right],\left[x_{2}, x_{4}\right], \ldots$ Now integrate like I did in class for the trapezoid rule:

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} q(x) d x=\sum_{k=1}^{n / 2} \int_{x_{2 k-2}}^{x_{2 k}} q(x) d x=\ldots
$$

Simplify your formula! Specifically, pay attention to when h, or multiples of h, appear in your formulas. The result should be

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
$$

This problem is from Chapter 8 of the textbook.
Problem Exercise 16 on page 211.

The remaining problems are from Chapter 10 of the textbook.
Problem Exercise 1 on page 248.
Problem Exercise 6 on page 249.

