Assignment \#5

Due Wednesday 24 October, 2012 at the start of class, when I will hand out solutions immediately. Thus: late homework will not be accepted.

In your solutions to all problems, remember to:

- show me your calculations,
- show me the MATLAB code or commands, if used, and
- check that you have answered the question.

Problem I. (a) Consider the system

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=5 \\
4 x_{1}-3 x_{2}+2 x_{3}=1 \\
2 x_{1}+x_{2}+x_{3}=3
\end{array}
$$

As is done with the example on pages 134-135 (i.e. the first example in section 7.2), perform Gaussian elimination by hand to transform it into an upper triangular system. (Do not swap rows.) Then do back substitution by hand.

Of course, the system has abstract form $A \mathbf{x}=\mathbf{b}$. Enter A and \mathbf{b} into Matlab and confirm your by-hand solution by $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$.
(b) Let

$$
L_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad L_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{2}{9} & 1
\end{array}\right]
$$

Let M be the augmented matrix $M=[A \mid b]$. Confirm by hand that

$$
L_{1} M \quad \text { and } \quad L_{2} L_{1} M
$$

correspond to stages of the computation you did by hand in part (a). In particular, $L_{2} L_{1} M$ is the upper triangular system you solved in (a).
(c) All of the computations in this part can and should use MATLAB. You may us the inv command: Compute $U=L_{2} L_{1} A$. Check that

$$
\left(L_{1}\right)^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad\left(L_{2}\right)^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{2}{9} & 1
\end{array}\right]
$$

Confirm that $\left(L_{2} L_{1}\right)^{-1}=\left(L_{1}\right)^{-1}\left(L_{2}\right)^{-1}$. Let $L=\left(L_{2} L_{1}\right)^{-1}$. Confirm that $L U=A$.
(d) At the bottom of page 135 it says "...to solve $A \mathbf{x}=L U \mathbf{x}=\mathbf{b}$, one first solves the lower triangular system $L \mathbf{y}=\mathbf{b}$ (to obtain $\mathbf{y}=U \mathbf{x}$) and then the upper triangular system $U \mathbf{x}=\mathbf{y}$." Confirm by doing it in MATLAB that you get the same answer this way as you did in part (a).

Problem II. (a) Open a new m-file called firstge.m. Type in the code at the top of page 137; you don't need to type in the comments, but be careful with the loop indices and other details. Note that, for the code to run, the variables n, A, b must all be already defined and of the right size in order for this to run properly.
(b) Consider the 4×4 linear system $A \mathbf{x}=\mathbf{b}$:

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =7 \\
2 x_{1}+x_{2}-x_{4} & =-1 \\
x_{1}+x_{4} & =4 \\
2 x_{2}-2 x_{3} & =-8
\end{aligned}
$$

Type it in and run firstge.m on it. Show the resulting A and \mathbf{b}; these are different from the ones you typed in. By computing $x=A \backslash b$, solve this new system. Confirm by $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ on the original A and \mathbf{b} that you are getting the same solution. Also confirm your solution by hand based on the original system. (Note: Confirming a solution does not require doing Gaussian elimination by hand! You will not get full credit if you do that.)

The remaining problems are from Chapter 7 of the textbook Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms by Greenbaum and Chartier:

Exercise 2 on page 175.
Exercise 3 on pages 175-176.
Exercise 4 on page 176.
Exercise 6 on page 176.
Exercise 8 on page 176.

