
Math 310 Numerical Analysis (Bueler) September 15, 2011

An awkward first method for computing√
x using only + and ∗

Suppose we seek the square root of A on a machine that can only do addition and multipli-
cation. We assume A ≥ 0 for simplicity, and of course if A = 0 then

√
A = 0 and we are done.

Otherwise the computer has something like this way of representing x as bits:1

A = 1.011010012 × 2b.

There are bits representing the binary “mantissa” 1.011010012, in base 2. As in scientific no-
tation, the mantissa has the decimal point in the same place for all A. Bits also represent the
power b, which is an integer.

If b is even then we know the exact square root of 2b, but not so if b is odd. (Consider the
b = 1 case. I do not know

√
2 exactly.) But we can shift the decimal point so that the power is

even. For example, we can write A = 10.11010012 × 2b−1 if b above is odd. Thus, in any case,
we can write

A = x× 22k

for x in a range 1 = 1.00000002 ≤ x ≤ 11.111111 . . . 2 = 3.99999 · · · < 4. Here k is an integer.
Then √

A =
√
x× 2k.

This is why we need a good approximation for
√
x where x ∈ [1, 4]. With such a good approx-

imation we can approximate
√
A for A of any magnitude.

The tool we have right now is Taylor’s Theorem. Let f(x) =
√
x. Let us try a base point

x0 = 4. This is a good choice because the interval of convergence of the Taylor series will be
stopped by x = 0 but it should include x ∈ [1, 4]. Equally important, the square root of 4 is,
after all, known! Now start computing derivatives as usual:

f(x) = x1/2 f(x0) = 2

f ′(x) =
1

2
x−1/2 f ′(x0) =

1

2 · 2

f ′′(x) =
−1
22

x−3/2 f ′′(x0) =
−1
22 · 23

f ′′′(x) =
+3

23
x−5/2 f ′′(x0) =

+3

23 · 25

f (4)(x) =
−3 · 5
24

x−7/2 f (4)(x0) =
−3 · 5
24 · 27

...
...

f (k)(x) =
(−1)k−13 · 5 · 7 · · · · · (2k − 3)

2k
x−(2k−1)/2 f (k)(x0) =

(−1)k−13 · 5 · 7 · · · · · (2k − 3)

2k · 22k−1

1Section 1.3 of the textbook (J. Epperson, An Introduction to Numerical Methods and Analysis, rev. ed., Wiley, 2007)
has a more authentic form, but nothing is fundamentally wrong about the story here.



2

Because we want lots of accuracy, let us plan to find n so that the Taylor polynomial is within
10−16 for all x ∈ [1, 4]:

|f(x)− pn(x)| = |Rn(x)| ≤ 10−16.

But

|Rn(x)| =
|f (n+1)(ξ)|
(n+ 1)!

|x− x0|n+1 =

3·5·7·····(2n−1)
2n+1 ξ−(2n+1)/2

(n+ 1)!
|x− 4|n+1

=
(3 · 5 · 7 · · · · · (2n− 1)) |x− 4|n+1

2n+1 (n+ 1)! ξ(2n+1)/2

from the derivative expressions, using k = n + 1. As usual, all we know about ξ is that it is
between x0 = 4 and x. Thus both x ∈ [1, 4] and ξ ∈ [1, 4]. Considering the worst cases and
simplifying the factorial expressions,

|Rn(x)| ≤
(3 · 5 · 7 · · · · · (2n− 1)) 3n+1

2n+1 (n+ 1)! 1(2n+1)/2
=

(2n− 1)! 3n+1

2n+1 2n−1 (n− 1)! (n+ 1)!
=

(2n− 1)! 3n+1

22n (n− 1)! (n+ 1)!
.

Unfortunately, as shown in class the right-hand estimate in the above grows exponentially, as
shown in Figure 1.

100

105

1010

1015

1020

1025

0 10 20 30 40 50

R

n

FIGURE 1. Estimate (2n−1)! 3n+1

22n (n−1)! (n+1)!
grows exponentially with n.

What is going on? One possibility is that |Rn(x)| does not decrease with n, and thus that we
will not be able to find n so that |Rn(x)| ≤ 10−16 for x ∈ [1, 4]. But another possibility is that
the worst-case estimate above is too pessimistic.

To diagnose let us plot f(x) =
√
x and some polynomials pn(x) as well. In fact, we can

thereby see the remainder term Rn(x), as it is the difference Rn(x) = f(x)− pn(x). The polyno-
mials have these formulas,

pn(x) =
n∑

k=0

f (k)(4)

k!
(x− 4)k

= 2 +
1

4
(x− 4)− 1

26
(x− 4)2 +

n∑
k=3

(−1)k−13 · 5 · 7 · · · · · (2k − 3)

2k · 22k−1 · k!
(x− 4)k

= 2 +
1

4
(x− 4)− 1

26
(x− 4)2 +

n∑
k=3

(−1)k−1(2k − 3)!

24k−3 · (k − 2)! · k!
(x− 4)k



3

(I have written out 1, x, x2 terms explicitly because it takes a while for the pattern to get “es-
tablished”.)

Sums like the above are, essentially, programs. By being specific enough to use summation
notation, we have basically written a code. Here is a MATLAB/OCTAVE code which generates
Figure 2.

1 1.5 2 2.5 3 3.5 4
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

n

|R
n(x

)|
 =

 |f
(x

)−
p n(x

)|

 

 
n=2
n=5
n=10
n=20
n=40
n=70

FIGURE 2. Plots of the error |Rn(x)| = |f(x)− pn(x)|. Note that p70(x) gives an
error which is less than 10−11 on the whole interval [1, 4].

plotpolysqrt.m
% PLOTPOLYSQRT Show how well Taylor polynomials p_n(x) approximate

% the square root function on the interval [1,4].

x = linspace(1,4,1001)’; % points on [1,4], as a column

f = sqrt(x);

p1 = 2 + (1/4)*(x-4); % get started explicitly

p2 = p1 - (1/64)*(x-4).ˆ2;

N = 70; % this many p_n(x)

pn = zeros(length(x),N); % space for all p_n(x)

pn(:,1) = p1;

pn(:,2) = p2;

sign = -1;

for n = 3:N % count through the n-values

sign = (-1) * sign; % generate alternating sign

coeff = factorial(2*n-3) ...

/ ( 2ˆ(4*n-3) * factorial(n-2) * factorial(n) );

pn(:,n) = pn(:,n-1) + sign * coeff * (x-4).ˆn; % add next term

end



4

for n=1:N % replace each polynomial

pn(:,n) = abs(f - pn(:,n)); % with its error

end

semilogy(x,pn(:,[2 5 10 20 40 70])), grid on % log scale on y

legend(’n=2’,’n=5’,’n=10’,’n=20’,’n=40’,’n=70’)

xlabel n, ylabel(’|R_n(x)| = |f(x)-p_n(x)|’)

Figure 2 shows that we got pretty good accuracy, with |Rn(x)| < 10−11 for n = 70 on [1, 4],
though not 10−16. Thus the problem with the analysis above was not that the remainder Rn(x)

itself was growing in magnitude as n increased, but that our estimate of the remainder was
growning like that. For our purpose it is not good enough as an estimate.

Thus we can write an admittedly awkward code for
√
x that uses stored coefficients of p70(x).

It starts by extracting the mantissa and power the input number x using the “log2” function
which is designed for this purpose, but this could easily be done in hardware by moving bits
left and right. Similarly, at the end it uses exponential to replace “2b” with “2b/2”, but this is a
bit manipulation that can be done in hardware.

edsqrt.m
function y = edsqrt(x)

% EDSQRT An awkward Taylor polynomial method to compute sqrt(x)

% using only + and *.

if x < 0, error(’EDSQRT(x) only works for x >= 0’), end

if x == 0, y = 0; return, end % done with x = 0 case

% extract mantissa and exponent in base 2 scientific notation;

% (in a "real" implementation this would be done by hardware)

[mant,expo] = log2(x);

mant = mant * 2; % adjust to match in-class:

expo = expo - 1; % mantissa is in [1,2]

if mod(expo,2)==1 % is exponent odd?

expo = expo - 1; % fix exponent to be even

mant = mant * 2;

end

x = mant; % now 1 <= x <= 4

% stored coefficients; computed by a PLOTPOLYSQRT run

c = [2.000000000000e+00 2.500000000000e-01 -1.562500000000e-02 ...

1.953125000000e-03 -3.051757812500e-04 5.340576171875e-05 ...

-1.001358032227e-05 1.966953277588e-06 -3.995373845100e-07 ...

8.323695510626e-08 -1.768785296008e-08 3.818968252745e-09 ...

-8.353993052879e-10 1.847517694387e-10 -4.123923424970e-11 ...

9.278827706183e-12 -2.102234402182e-12 4.791857828503e-13 ...

-1.098134085699e-13 2.528598223648e-14 -5.847383392186e-15 ...

1.357428287472e-15 -3.162190896951e-16 7.389902639615e-17 ...

-1.732008431160e-17 4.070219813225e-18 -9.588498598464e-19 ...



5

2.263951057971e-19 -5.356669913948e-20 1.269900195117e-20 ...

-3.016012963403e-21 7.175192130676e-22 -1.709713749888e-22 ...

4.079998721323e-23 -9.749996944338e-24 2.333034983110e-24 ...

-5.589562980367e-25 1.340739768939e-25 -3.219539576729e-26 ...

7.739277828676e-27 -1.862263727525e-27 4.485330319344e-28 ...

-1.081284987699e-28 2.608914359855e-29 -6.299935243968e-30 ...

1.522484350626e-30 -3.682095304502e-31 8.911454061429e-32 ...

-2.158242780502e-32 5.230435309891e-33 -1.268380562649e-33 ...

3.077688129956e-34 -7.472271661672e-35 1.815198068755e-35 ...

-4.411939750446e-36 1.072903530222e-36 -2.610412607014e-37 ...

6.354293846021e-38 -1.547489665087e-38 3.770366768750e-39 ...

-9.190268998828e-40 2.241069694386e-40 -5.467125665741e-41 ...

1.334239001758e-41 -3.257419437886e-42 7.955620550223e-43 ...

-1.943702748066e-43 4.750467537250e-44 -1.161419453041e-44 ...

2.840428010154e-45 -6.948904239127e-46];

y = c(1);

for n = 1:70

y = y + c(n+1) * (x-4)ˆn; % "ˆn" could be multiplication

end

y = y * 2ˆ(expo/2); % divide exponent by 2 to sqrt

So, does it work? Does it get good accuracy? Does it handle big and small numbers?
Here is how it compares to the built-in “sqrt” function. Note that I ask MATLAB/OCTAVE

to show more digits. Also, edsqrt.m appropriately complains about negative inputs.

>> format long
>> x=3.99; edsqrt(x), sqrt(x)
ans = 1.99749843554382
ans = 1.99749843554382
>> x=3141592600; edsqrt(x), sqrt(x)
ans = 56049.9116859251
ans = 56049.9116859251
>> x=0.00000000071828182845; edsqrt(x), sqrt(x)
ans = 2.68007803701683e-05
ans = 2.68007803701683e-05
>> x=-10; edsqrt(x), sqrt(x)
error: EDSQRT(x) only works for x >= 0
...

So far so good. In fact we are getting 15 digit agreement with the built -in function for
numbers which are very small and very big; our “bitwise” manipulation seems to work to put
the Taylor problem onto the interval [1, 4].

But there is a small problem, which we could predict from Figure 2. Namely when we look
at x near 1 in the interval [1, 4], there is reduced accuracy. It goes away by about x = 1.5:



6

>> x=1.0; edsqrt(x), sqrt(x)
ans = 1.00000000000481
ans = 1.00000000000000
>> x=1.1; edsqrt(x), sqrt(x)
ans = 1.04880884817055
ans = 1.04880884817015
>> x=1.5; edsqrt(x), sqrt(x)
ans = 1.22474487139159
ans = 1.22474487139159

As we will see there are shorter, faster ways to get accurate square root computations using
only + and ∗. We will return to this problem!


