Math 252 Calculus II (Bueler)

2 February 2018

Clean-up notes: Integrals of powers of tan and sec

These notes organize what was un-organized in lecture on Thursday 1 February.

The material in section 7.2 of Stewart (8e edition) includes indefinite integrals of the form

$$\int \tan^m x \, \sec^n x \, dx$$

where m and n are non-negative integers (whole numbers). The table below organizes how to do all such integrals. Several times we use this trigonometric identity:

(*)
$$1 + \tan^2 \theta = \sec^2 \theta.$$

Also note that once one gets to the integral of a polynomial in u one can be confident of success. (So I stop with "...")

integral	method
$\int \tan x dx$	Easy using $u = \cos x$: $\int \tan x dx = \int \frac{\sin x}{\cos x} dx = -\ln \cos x + C$
$\int \sec x dx$	Tricky. Get: $\int \sec x dx = \ln \sec x + \tan x + C$
	Reducible using (*) and $u = \tan x$:
$\int \tan^{\operatorname{any}} x dx$	$\int \tan^m x dx = \int \tan^{m-2} x \sec^2 x dx - \int \tan^{m-2} dx$
$(any \ge 2)$	$= \frac{1}{m-1} (\tan x)^{m-1} - \int \tan^{m-2} dx$
$\int \tan^{\operatorname{any}} x \sec^{\operatorname{even}} x dx$ (even ≥ 2)	Pull out $\sec^2 x$ for du and use (*) on remaining $\sec x$, then $u = \tan x$: $\int \tan^m x \sec^{2k} x dx = \int \tan^m x \sec^{2k-2} x \sec^2 x dx$ $= \int \tan^m x (1 + \tan^2 x)^{k-1} \sec^2 x dx$ $= \int u^m (1 + u^2)^{k-1} du = \dots$
$\int \tan^{\text{odd}} x \sec^{\text{any}} x dx$ $(\text{any} \ge 1)$	Pull out sec $x \tan x$ for du and use (*) on remaining $\tan x$, then $u = \sec x$: $\int \tan^{2k+1} x \sec^{m+1} x dx = \int \tan^{2k} x \sec^m x \sec x \tan x dx$ $= \int (\sec^2 x - 1)^k \sec^m x \sec x \tan x dx$ $= \int (u^2 - 1)^k u^m du = \dots$

The next table has tricky/hard cases which will **not be on quizzes and exams**.

integral	method
$\int \sec^{\text{odd}} x dx$ $(\text{odd} \ge 3)$	Separate one sec x . Then use (*) on remaining sec x . Then use known integral for $\int \sec x dx$ and integration-by-parts on other integral(s) with $dv = \sec x \tan x dx$. Get " $I = [\text{known}] - cI$ " type equations.
$\int \tan^{\text{even}} x \sec^{\text{odd}} x dx$ (even ≥ 2)	Use (*) to replace all $\tan x$ with $\sec x$. Get integrals of previous type.

2