## Written Homework #1

## Due at start of class Wednesday 24 January.

This Written Homework covers sections 6.1 and 6.2. You may work on it with other students; that is encouraged! It is also a "work sheet" to do during the Tuesday recitation section. The submitted version will, of course, be written by you. You must show your work for full credit.

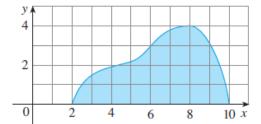
**1.** Sketch the region enclosed by the given curves, and find the enclosed area by integration with respect to your preferred variable:

$$4x + y^2 = 12, \quad x = y$$

**2.** Sketch the region enclosed by the given curves, and find the enclosed area by integration:

$$y = x^4, \quad y = 2 - |x|$$

(*Hint*. The points of intersection are at convenient locations.)


**3.** Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disc or washer:

$$xy = 1, \quad y = 0, \quad x = 1, \quad x = 2,$$
 about  $x = -1$ 

**4.** Find the volume of the solid S (as shown) whose base is a circular disk with radius r, and in which parallel cross-sections perpendicular to the base are squares.



5. (a) If the region shown in the figure is rotated about the x-axis to form a solid, use the midpoint rule with n=4 to estimate the volume of the solid.



**(b)** Estimate the volume if the same region is rotated about the y-axis. Again use the midpoint rule with n=4.