Name:

Math 252 Calculus II (Bueler)

Wednesday 11 April 2018

Quiz #10

In class. 25 minutes. No textbook or notes or calculator. 30 points total.

1. (5 pts) Determine, with explanation, whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

2. $(10 \ pts)$ Find all values of p for which the series is convergent, and all values of p for which it is divergent. (*Hint*. Integral test.)

$$\sum_{n=1}^{\infty} n(1+n^2)^p$$

3. (a) (5 pts) Compute and simplify the first two partial sums s_1, s_2 of the series

$$\sum_{n=1}^{\infty} \frac{n+2}{n^3+n}$$

(b) $(5 \ pts)$ Determine, with explanation, whether the series in (a) is convergent or divergent. (*Hint.* Integrating would be hard.)

4. (5 *pts*) For each real number x in the interval [0,1] there is a decimal representation $x = 0.d_1d_2d_3d_4...$ Notice that each digit d_n is one of the numbers 0, 1, 2, ..., 9. The meaning of this representation *is* a series:

$$x = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \frac{d_4}{10^4} + \dots = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$$

Show that this series always converges. (*Hint.* How big can d_n be? Comparison test.)