1. Find the point on the line $y=2 x+3$ which is closest to the origin.

$$
\begin{aligned}
d^{2}= & x^{2}+y^{2}=x^{2}+(2 x+3)^{2} \\
f(x)= & x^{2}+(2 x+3)^{2} \\
f^{\prime}(x)= & 2 x+2(2 x+3) \cdot 2 \\
= & 10 x+12=0 \\
& x=\frac{-6}{5}, y=2 x+3=\frac{3}{5}
\end{aligned}
$$

2. The top and bottom margins of a poster are each 6 cm and the side margins are 4 cm . If the area of the printed material on the poster is fixed at $384 \mathrm{~cm}^{2}$, find the dimensions of the poster with the smallest total area.

$$
\begin{aligned}
& x y=384 \\
& A=(\text { total poster area) } \\
& =(x+8)(y+12) \\
& =\widetilde{x y}=394+8 y+12 x+96 \\
& =12 x+8 y+480<\left(y=\frac{384}{x}\right) \\
& A(x)=12 x+\frac{3072}{x}+480 \\
& A^{\prime}(x)=12-\frac{3072}{x^{2}}=0 \\
& x^{2}=\frac{3072}{12}=256 \\
& x=16 \quad \therefore y=\frac{384}{16}=24 \therefore \\
& \text { dimensions: } \\
& \text { width }=24 \mathrm{~cm} \\
& \text { height }=36 \mathrm{~cm}
\end{aligned}
$$

3. A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible volume of such a cylinder.

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& V_{c y 1}=\pi x^{2} \cdot 2 y \\
& x^{2}=r^{2}-y^{2}
\end{aligned}
$$

$$
x=\text { radius }
$$ of cylinder

$$
V(y)=\pi\left(r^{2}-y^{2}\right) \cdot 2 y
$$

$$
2 y=\text { height }
$$ of cyimin

of cylinich

$$
\begin{array}{rl}
& =2 \pi r^{2} y-2 \pi y^{3} \\
V^{\prime}(y) & =2 \pi r^{2}-6 \pi y^{2}=0 \\
y^{2} & =\frac{2 \pi r^{2}}{6 \pi}=\frac{1}{3} r^{2} \\
y & \left.=+\sqrt{\frac{1}{3}} r \quad \frac{1}{\sqrt{3}} r \right\rvert\, \\
\hline 0 & 0 \\
V\left(\frac{1}{\sqrt{3}} r\right) & =2 \pi r^{2} \cdot \frac{1}{\sqrt{3}} r-2 \pi\left(\frac{1}{\sqrt{3}} r\right)^{3} \\
& =2 \pi r^{3}\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{3}}\right)=\frac{4 \pi}{3 \sqrt{3}} r^{3}
\end{array}
$$

