1. The velocity graph $v(t)$ of a braking car is shown.
(a) Use the graph to estimate the distance traveled by the car when the brakes are applied. (Suggestion: Use 3 or 6 rectangles.)
[your results will vary ... but your answer should be $100-200 \mathrm{ft}]$
with $n=3$ rectangles and midpoints:
 $d \approx 47.2+18.2+6.2=142 f 7)^{1 \text { moment }}$
(b) Write the exact distance as a definite integral.

$$
\int_{0}^{6} v(t) d t
$$

$$
\begin{aligned}
& \text { 2. Evaluate the upper and lower sums for } f(x)=2+\sin x \text { on } 0 \leq x \leq \pi \text { with } n=4 \text {. } \\
& \text { Illustrate with a diagram. } \\
& \qquad \Delta x=\frac{\pi-0}{4}=\frac{\pi}{4} \\
& (\text { lower sum) } \\
& =f(0) \cdot \frac{\pi}{4}+f\left(\frac{\pi}{4}\right) \cdot \frac{\pi}{4}+f\left(\frac{3 \pi}{4}\right) \cdot \frac{\pi}{4}+f(\pi) \cdot \frac{\pi}{4} \\
& =7.3939 \\
& \text { (upper sum) } \\
& =f\left(\frac{\pi}{4}\right) \cdot \frac{\pi}{4}+f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{4}+f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{4}+f\left(\frac{3 \pi}{4}\right) \cdot \frac{\pi}{4} \\
& =8.9647
\end{aligned}
$$

3. Evaluate the integral by interpreting it in terms of areas. (Hint: Start by sketching the integrand.)

$$
\begin{aligned}
& \int_{-4}^{3}\left|\frac{1}{2} x\right| d x=\int_{-4}^{0}\left|\frac{1}{2} x\right| d x+\int_{0}^{3}\left|\frac{1}{2} x\right| d x \\
& \quad=\frac{1}{2} \cdot 4 \cdot 2+\frac{1}{2} \cdot 3 \cdot \frac{3}{2} \\
& \quad=4+\frac{9}{4}=\frac{25}{4}
\end{aligned}
$$

4. (a) Set up an expression for the following integral as a limit of sums; you will not be able to compute the limit:

$$
\begin{aligned}
\int_{0}^{5} \arctan x d x= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \arctan \left(x_{i}\right) \Delta x \\
& {\left[\Delta x=\frac{5-0}{n}=\frac{5}{n}, x_{i}=0+i \cdot \frac{5}{n}\right] } \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \arctan \left(i \cdot \frac{5}{n}\right) \cdot \frac{5}{n}
\end{aligned}
$$

(b) Using a graph of $y=\arctan x$, sketch a diagram which shows that

