SOLUTIONS
Math F251: Section 3.4 Worksheet

1. Find the derivative of the function. You do not need to simplify your answer.
(a)

$$
\begin{aligned}
& y=\left(x+\frac{1}{x}\right)^{7} \\
& y^{\prime}=7\left(x+x^{-1}\right)^{6} \cdot\left(1-x^{-2}\right)
\end{aligned}
$$

(b) $\quad f(\theta)=\cos \left(\theta^{2}\right)$

$$
f^{\prime}(\theta)=-\sin \left(\theta^{2}\right) \cdot 2 \theta
$$

(c) $\quad g(t)=2^{\left(t^{3}\right)}$

$$
g^{\prime}(t)=(\ln 2) 2^{\left(t^{3}\right)} \cdot 3 t^{2}
$$

(d) $y=\sqrt{x+\sqrt{x+\sqrt{x}}}$

$$
\frac{d y}{d x}=\frac{1}{2}(x+\sqrt{x+\sqrt{x}})^{-1 / 2}\left(1+\frac{1}{2}(x+\sqrt{x})^{-1 / 2} \cdot\left(1+\frac{1}{2} x^{-1 / 2}\right)\right)
$$

2. Find an equation of the tangent line to the curve at the given point.

$$
\begin{aligned}
& y=\sqrt{1+x^{3}}, \\
& y^{\prime}=\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2}\left(0+3 x^{2}\right) \\
& y^{\prime}(2)=\frac{1}{2}\left(1+2^{3}\right)^{-\frac{1}{2}}\left(3 \cdot 2^{2}\right)=\frac{1}{x} \frac{1}{\sqrt{9}} 3 \cdot 2 \cdot 2=\frac{3 \cdot 2}{3}=2 \\
& y-3=2(x-2)
\end{aligned}
$$

3. If $F^{\prime}(x)=f(g(x))$, and if $\left.f(-2)=8, f^{\prime}(-2)^{3}=4\right) f^{\prime}(5)=3, q(5)=-2$, and
$g^{\prime}(5)=6$, find $F^{\prime}(5)$.
by chain rules $F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
so

$$
\begin{aligned}
F^{\prime}(5) & =f^{\prime}(g(5)) \cdot g^{\prime}(5) \\
& =f^{\prime}\left(\frac{-2)}{1} \cdot \frac{6}{2}=\frac{4}{3} \cdot 6=24\right.
\end{aligned}
$$

4. Find the 49th derivative of $f(x)=x e^{-x}$.

$$
\begin{aligned}
& f^{\prime}(x)=1 \cdot e^{-x}+x\left(-e^{-x}\right)=(1-x) e^{-x} \\
& f^{\prime \prime}(x)=-1 \cdot e^{-x}+(1-x)\left(-e^{-x}\right)=(-2+x) e^{-x} \\
& f^{\prime \prime \prime}(x)=1 \cdot e^{-x}+(-2+x)\left(-e^{-x}\right)=(3-x) e^{-x}
\end{aligned}
$$

So: $\quad f^{(4)}(x)=(-4+x) e^{-x}, \quad f^{(5)}(x)=(5-x) e^{-x}, \ldots$
so $f^{(49)}(x)=(49-x) e^{-x}$

