1. Sketch the graph of a function that satisfies all of the given conditions:

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow \infty} f(x)=3 \\
& \text { - } \lim _{x \rightarrow 2^{-}} f(x)=\infty \\
& \text { - } \lim _{x \rightarrow 2^{+}} f(x)=-\infty \\
& \text { - } f \text { is odd }
\end{aligned}
$$

2. Find all the vertical and horizontal asymptotes of the graph

$$
y=\frac{2 x^{2}+x-1}{x^{2}+x-2}
$$

$$
\begin{aligned}
& 2 x^{2}+x-1=0 \\
& x=\frac{-1 \pm \sqrt{1+8}}{4}
\end{aligned}
$$

and clearly state limits which justify these asymptotes. (Also make a rough sketch $=-1$, $\frac{1}{2}$ of the graph. You may be able to confirm your work by graphing calculator.)

3. Show that f is continuous on $(-\infty, \infty)$, and sketch the graph:

$$
f(x)= \begin{cases}\sin x & \text { if } x<\pi / 4 \\ \cos x & \text { if } x \geq \pi / 4\end{cases}
$$

if $x>\frac{\pi}{4}, f$ is continuous because $\cos x$ is continuous
if $x<\frac{\pi}{4}, f$ is continuous because $\sin x$ is continuous at $x=\frac{\pi}{4}: \quad f\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \lim _{x \rightarrow \frac{\pi}{4}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}^{-}} \sin x=\frac{\sqrt{2}}{2}$

$$
\text { and } \lim _{x \rightarrow \frac{\pi}{4}^{+}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}^{+}} \cos x=\frac{\sqrt{2}}{2}
$$

4. Prove that the equation has at least one real root:

$$
\ln x=3-2 x
$$

(A calculator can help find an accurate approximation, but this is not required!)

$$
f(x)=\ln x-3+2 x \quad \text { domain: }(0, \infty)
$$

$f(1)=0-3+2=-1\}$ since f is contionons, by IVT than is C in $f(e)=1-3+2 e>0 \quad \begin{aligned} & {[e \approx 2.7]}\end{aligned}(1, e)$ so that $f(c)=0$ [e $\approx 2.7]$
5. A challenge problem, but actually easy. It follows from the Intermediate Value Theorem. Start by sketching elevation versus time for each day, one on top of the other.
A Tibetan monk leaves the monastery at 7:00 AM and takes his usual path to the top of the mountain, arriving at 7:00 PM and sleeping on top. The next morning he starts at 7:00 AM at the top and takes the same path back, arriving at the monastery at 7:0 pm. Show that there is a point on the path that the monk will cross at exactly the same time of day on both days.

let $g(t)=f_{1}(t)-f_{2}(t)$
So

$$
\begin{aligned}
& g(0)=0-(\text { top })<0 \\
& g(12)=(\text { top })-0>0
\end{aligned}
$$

since $g(t)$ is continuous (why? ... even monks don't tee port), there is C s.t. $g(c)=0$ so $f_{1}(c)=f_{2}(c)$

