$\frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} + \frac{1}$

1. Sketch the graph of a function that satisfies all of the given conditions:

2. Find all the vertical and horizontal asymptotes of the graph

$$y = \frac{2x^2 + x - 1}{x^2 + x - 2},$$

and clearly state limits which justify these asymptotes. (*Also make a rough sketch* of the graph. You may be able to confirm your work by graphing calculator.)

$$y = \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} \xrightarrow{So} \lim_{x \to \infty} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = Z \xrightarrow{(Y = 2)} \frac{1}{15hm}$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = -\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

$$\lim_{x \to -2^{+}} \frac{2 \times 2 + \times -1}{(X + 2)(X - 1)} = +\infty$$

3. Show that *f* is continuous on $(-\infty, \infty)$, and sketch the graph:

$$f(x) = \begin{cases} \sin x & \text{if } x < \pi/4 \\ \cos x & \text{if } x \ge \pi/4 \end{cases}$$

if $x > \overline{T}_{4}$, f is continuous because $\cos x$ is continuous
if $x < \overline{T}_{4}$, f is continuous because $\sin x$ is continuous
at $x = \overline{T}_{4}$: $f(\overline{T}_{4}) = \frac{\sqrt{2}}{2}$, $\lim_{x \to \overline{T}_{4}} - f(x) = \lim_{x \to \overline{T}_{4}} \sin x = \frac{\sqrt{2}}{2}$
and $\lim_{x \to \overline{T}_{4}} f(x) = \lim_{x \to \overline{T}_{4}} \cos x = \frac{\sqrt{2}}{2}$

4. Prove that the equation has at least one real root:

$$\ln x = 3 - 2x$$

(A calculator can help find an accurate approximation, but this is not required!)

$$f(x) = l_{n}x - 3 + 2x$$
 domain: $(0, \infty)$
 $f(1) = 0 - 3 + 2 = -1$ 7 since f is confirming,
 $f(e) = |-3 + 2e > 0$ 5 by IVT there is c in
 $f(e) = |-3 + 2e > 0$ 5 (1,e) so that $f(c) = 0$
 $[e = 2.7]$

5. *A challenge problem, but actually easy. It follows from the Intermediate Value Theorem. Start by sketching elevation versus time for each day, one on top of the other.*

A Tibetan monk leaves the monastery at 7:00 AM and takes his usual parth to the top of the mountain, arriving at 7:00 PM and sleeping on top. The next morning he starts at 7:00 AM at the top and takes the same path back, arriving at the monastery at 7:00 pM. Show that there is a point on the path that the monk will cross at exactly the same time of day on both days.

et
$$g(t) = f_1(t) - f_2(t)$$

So $g(0) = 0 - (top) < 0$
 $g(12) = (top) - 0 > 0$
Since $g(t)$ is continuous
(why? ... even monks don't
teleport), there is $c s.t.g(4)=0$
so $f_1(c) = f_2(c)$