1. (See examples and exercises in $\S 2.2$ and $\S 2.6$.) Give an example of a graph $y=f(x)$ with a vertical asymptote at $x=-1$ and a horizontal asymptote at $y=2$.
2. (See §3.4.) Build an example of a complicated chain rule derivative question. That is, write down $f(x)$ and compute the derivative $f^{\prime}(x)$.
3. (See §5.5.) Write the previous example as an indefinite integration question. Give a substitution which will solve it. Complete the integration.

Some advice for the actual Final Exam:
Read the question. Don't just guess it is of a certain type.
4. (See §4.7.) A steel cylindrical can is to hold 1 L of oil. Find the dimensions of the can that will minimize the amount of steel.
5. (See $\S 5.1$ and $\S 5.2$.) For the integral $\int_{0}^{6} \frac{1}{1+x^{4}} d x$, compute the Riemann sums with $n=3$ rectangles and both left and right endpoints.
6. (See $\S 4.3$ and $\S 4.5$.) Find the critical points, intervals of increase and decrease, and points of inflection of $f(x)=x^{3}-3 x-1$. Then sketch the graph $y=f(x)$.
7. (See §4.8.) In the graph above there is a solution of $f(x)=0$ near $x=2$. Approximate it using one step of Newton's method, and add that to your sketch.
8. (See $\S 3.5$.) Find $d y / d x$ by implicit differentiation: $y \cos x=x^{2}+y^{2}$

