1. (a) The graph of $f(t)$ is at right. Suppose we define the new function

$$
g(x)=\int_{0}^{x} f(t) d t
$$

Sketch $g(2)$ as an area.
(b) What are the exact values of $g(0), g(2), g(4), g(6)$? (Assume the curved part is circular.)

2. Evaluate the integral:

$$
\int_{0}^{1}(1+r)^{3} d r=
$$

3. Evaluate the integral and interpret as a difference of areas:

$$
\int_{\pi / 6}^{3 \pi / 2} \cos x d x=
$$

4. Evaluate the integral:

$$
\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^{2}} d x=
$$

5. (a) Use part II of the Fundamental Theorem of Calculus to compute

$$
y(x)=\int_{\cos x}^{\pi} \theta^{2} d \theta
$$

Then differentiate to find $d y / d x$.
(b) Use part I of the Fundamental Theorem of Calculus, and the chain rule, to find $d y / d x \ldots$ and get the same result as in (a).

