1. Sketch the graph of a function that satisfies all of the given conditions:

- $\lim _{x \rightarrow \infty} f(x)=3$
- $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
- $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
- f is odd

2. Find all the vertical and horizontal asymptotes of the graph

$$
y=\frac{2 x^{2}+x-1}{x^{2}+x-2}
$$

and clearly state limits which justify these asymptotes. (Also make a rough sketch of the graph. You may be able to confirm your work by graphing calculator.)
3. Show that f is continuous on $(-\infty, \infty)$, and sketch the graph:
$f(x)= \begin{cases}\sin x & \text { if } x<\pi / 4 \\ \cos x & \text { if } x \geq \pi / 4\end{cases}$
4. Prove that the equation has at least one real root:

$$
\ln x=3-2 x
$$

(A calculator can help find an accurate approximation, but this is not required!)
5. A challenge problem, but actually easy. It follows from the Intermediate Value Theorem. Start by sketching elevation versus time for each day, one on top of the other.
A Tibetan monk leaves the monastery at 7:00 AM and takes his usual path to the top of the mountain, arriving at 7:00 PM and sleeping on top. The next morning he starts at 7:00 AM at the top and takes the same path back, arriving at the monastery at 7:00 PM. Show that there is a point on the path that the monk will cross at exactly the same time of day on both days.

