1. Find the derivative of $f(x)=\left(x+x^{2}\right)\left(x^{-1}+3\right)$ in two ways:
(i) by the product rule:
(ii) by first expanding the product:
2. Differentiate.
(a) $y=\frac{\sqrt{x}}{2+x}$
(b) $\quad g(x)=\left(\pi^{1 / 2}+5 \sqrt{x}\right) e^{x}$
(c) $\quad f(x)=\frac{a x+b}{c x+d}$
3. If $h(2)=4$ and $h^{\prime}(2)=-3$, find

$$
\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=2}
$$

4. Consider these facts:

- $\csc x=1 / \sin x$
- $\cot x=\cos x / \sin x$
- $(\sin x)^{\prime}=\cos x$

Use the quotient rule and the above facts to show that

$$
\frac{d}{d x}(\csc x)=-\csc x \cot x
$$

5. Differentiate $f(\theta)=\theta \cos \theta \sin \theta$.
