Math F251 review: constructing possible final problems

Friday 7 December 2018

be different

1. (Compare the examples and exercises in §2.2 and §2.6.) Give an example of a graph y = f(x) with a vertical asymptote at x = -1 and a horizontal asymptote at y = 2.

2. (Compare the examples and exercises in §4.3 and §4.5.) In these sections there are problems which list a number of criteria for the graphs of functions, such as "f(1) = 0" or "f'(x) > 0 for 0 < x < 5" or "f has an inflection point at x = -3". Build an example with 7 such criteria and sketch a graph with these properties. Can the criteria be in conflict?

Some advice for the actual Final Exam:

Read the question. Don't just guess it is of a certain type.

3. (Compare the examples and exercises in §3.4.) Build an example of a complicated chain rule derivative question. Compute the derivative.

Ex.
$$f(x) = 2^{\sin x + x^2}$$
 find $f(x)$
Solution: $f'(x) = (\ln 2) 2^{\sin x + x^2}$ (cos x + 2x)

4. (*Compare the examples and exercises in* §5.5.) Write the previous example as an indefinite integration question. Give a substitution which will solve it, and do the integral. Is the problem you have built of reasonable difficulty?

problem you have built of reasonable difficulty?

Ex: Evaluate the integral:
$$Sinx+x^2$$
 (cosx+2x) dx

Soln: $Sinx+x^2$ (cosx+2x) dx $U=Sinx+x^2$

$$= Sunx+x^2$$
 (cosx+2x) dx $U=Sinx+x^2$

$$= Sunx+x^2$$
 (cosx+2x) dx $U=Sinx+x^2$

$$= Sunx+x^2$$

$$=$$

5. (Compare the examples and exercises in §3.9.) In related rates problems several quantities are changing in time, but these quantities are related by an equation. Build such an example.

Ex: A ten-foot ladder is leaning against

a wall. The base is slipping away from the

wall at 2 feet per minute when the base is

3 feet from the wall. How fast is the top moving

down the wall at that time?

Sala:

2. 2-102

32+y2=102

Soln:
$$x^{2}+y^{2}=10^{2}$$
 $y=\sqrt{100-9}=\sqrt{91}$ $y=\sqrt{100-9}=\sqrt{91}$ $y=\sqrt{100-9}=\sqrt{91}$ $y=\sqrt{100-9}=\sqrt{91}$ $y=\sqrt{100-9}=\sqrt{91}$