Newton's method solves a problem

$$
f(x)=0
$$

by starting with an initial estimate x_{0}. It gets a new estimate from the old estimate by finding where the linearization $L(x) \approx f(x)$ crosses the x-axis. (To understand this, write down the linearization at $a=x_{0}$. Solve for x.) So it uses this formula:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Example 1. Suppose you want to solve the equation

$$
3 x^{4}-x^{3}+6 x^{2}+4 x-2=0 .
$$

I do not see how to factor this by hand. (Do you?) If we name the left side of the equation " $f(x)$ " and if we go looking for a root of $f(x)$ then we might notice $f(0)=-2$ and $f(1)=10$. Because f is continuous, by the intermediate value theorem there is a root on $(0,1)$. Also, the derivative is an easy calculation: $f^{\prime}(x)=12 x^{3}-3 x^{2}+12+4$.
Newton's method with initial estimate $x_{0}=1 / 2$ gives the next value by

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0.354651162790698
$$

(It is nice to immediately use a serious calculator, namely one with a big screen and the ability to run a loop. Thus I used MATLAB on my laptop.) The next four iterations gave consistent numbers which strongly suggest $x=1 / 3$ is an exact root:

$$
\begin{aligned}
& x_{0}=0.500000000000000 \\
& x_{1}=\underline{0.354651162790698} \\
& x_{2}=\underline{0.333718551391767} \\
& x_{3}=\underline{0.333333461355651} \\
& x_{4}=\underline{0.333333333333347} \\
& x_{5}=\underline{0.333333333333333}
\end{aligned}
$$

Notice how the number of correct digits doubles from x_{1} to x_{4}. It stops doubling only because the computer only stores about 16 decimal digits. In fact we have discovered how to factor the function: $f(x)=\left(x-\frac{1}{3}\right)\left(3 x^{3}+6 x+6\right)$.

Example 2. Suppose we want to find the maximum of $g(x)=x^{2}-2 \sin x$ on the interval $[0,1]$. We take the derivative and set it to zero to find the critical numbers:

$$
2 x-2 \cos x=0
$$

You can factor and remove the " 2 ," but otherwise this is an equation I do not know how to solve by hand. So I try Newton's method. Let $f(x)=x-\cos x$ so $f^{\prime}(x)=1+\sin (x)$. Newton's method starting with $x_{0}=0.5$ gives these five iterates, and the last two agree to all digits:

$$
\begin{aligned}
& x_{0}=0.500000000000000 \\
& x_{1}=\underline{0.755222417105636} \\
& x_{2}=\underline{0.739141666149879} \\
& x_{3}=\underline{0.739085133920807} \\
& x_{4}=\underline{0.739085133215161} \\
& x_{5}=\underline{0.739085133215161}
\end{aligned}
$$

In fact $f\left(x_{4}\right)=0$ to the accuracy of the computer. Again notice the approximate doubling of the number of correct digits at each Newton step.

