1. (a) The graph of $f(t)$ is at right. Suppose we define the new function

$$
g(x)=\int_{0}^{x} f(t) d t
$$

Assuming the lines are straight and the curved part is circular, what are the exact values of $g(0), g(2), g(4), g(6)$?
(b) Sketch the graph of $g(x)$ on the provided axes.
(c) What is the graph of $g^{\prime}(x)$?

2. (a) Use part I of the Fundamental Theorem of Calculus, and the chain rule, to find $d y / d x$ if

$$
y=\int_{\cos x}^{\pi} \theta^{2} d \theta
$$

(b) Use part II of the Fundamental Theorem of Calculus to find $y=y(x)$. Then differentiate to find $d y / d x \ldots$ and get the same result as in (a).
3. Evaluate the integral and interpret as a difference of areas:

$$
\int_{\pi / 6}^{3 \pi / 2} \cos x d x=
$$

4. Evaluate the integral:

$$
\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^{2}} d x=
$$

5. Evaluate the integral:

$$
\int_{0}^{1}(1+r)^{3} d r=
$$

6. Suppose we define a function:

$$
f(x)= \begin{cases}\sin x & \text { if } 0 \leq x \leq \pi / 2 \\ \cos x & \text { if } \pi / 2<x \leq \pi\end{cases}
$$

Evaluate the integral $\int_{0}^{\pi} f(x) d x$.

