1. The velocity graph $v(t)$ of a braking car is shown.
(a) Use the graph to estimate the distance traveled by the car when the brakes are applied. (Suggestion: Use 3 or 6 rectangles.)

(b) Write the exact distance as a definite integral.
2. Evaluate the upper and lower sums for $f(x)=2+\sin x$ on $0 \leq x \leq \pi$ with $n=4$. Illustrate with a diagram.
3. Evaluate the integral by interpreting it in terms of areas. (Hint: Start by sketching the integrand.)

$$
\int_{-4}^{3}\left|\frac{1}{2} x\right| d x
$$

4. (a) Set up an expression for the following integral as a limit of sums; you will not be able to compute the limit:

$$
\int_{0}^{5} \arctan x d x
$$

(b) Using a graph of $y=\arctan x$, sketch a diagram which shows that

$$
\frac{5 \pi}{4} \leq \int_{0}^{5} \arctan x d x \leq \frac{5 \pi}{2}
$$

