1. Use the graph to state the absolute and local maximum and minimum values of the function.

2. Sketch the graph f by hand and use your sketch to find the absolute and local maximum and minimum values of f.
$f(t)=\cos (t), \quad-\frac{3 \pi}{2} \leq t<\pi$
3. Sketch a graph of a function f which is continuous on $[1,5]$, which has an absolute maximum at 2 , has an absolute minimum at 5 , and for which 4 is a critical number but neither a local maximum nor local minimum.
4. Find the absolute maximum and minimum values of f on the given interval: $f(x)=2 x^{3}-3 x^{2}-12 x+1, \quad[-2,3]$
5. Find the absolute maximum and minimum values of f on the given interval:

$$
f(x)=x^{-2} \ln x, \quad\left[\frac{1}{2}, 4\right]
$$

6. Find the critical numbers of the function:

$$
h(p)=\frac{p-1}{p^{2}+4}
$$

