1. The rate of change of atmospheric pressure P with respect to altitude h is proportional to P. (This assumes the temperature is constant; let us assume that.)
(a) Write a differential equation corresponding to the first sentence above; use k for the constant of proportionality. Then write a formula for $P(h)$ in terms of $P(0)$, k, and h.
(b) At a temperature of $15^{\circ} \mathrm{C}$, the pressure is 101.3 kPa at sea level and the pressure is 87.14 kPa at $h=1000 \mathrm{~m}$. From these facts, determine $P(0)$ and k.
(c) What is the pressure at the top of Denali, at an altitude of 6187 m ? (The problem in the book, \#19 in §3.8, has an error. It calls it "Mount McKinley.")
(d) At what altitude is the pressure $1 / 3$ of what it is at sea level?
2. Gravel can be made by crushing rock and then running it through a screen for sorting. Typically the sorted gravel is piled into a cone by a conveyor belt. Because the gravel slides down the sides as the pile steepens, the sides alway have about the same angle (the angle of repose) and the pile keeps its shape as it grows.
(a) Draw a conveyor belt feeding a conical pile of gravel. Label the radius of the base of the cone as r and its height as h.
(b) The volume of a cone is

$$
V=\frac{1}{3} \pi r^{2} h
$$

As the pile grows, which of the variables in this equation depend on time?
(c) Compute $d V / d t$ by differentiating the above equation, keeping in mind that the other variables are also functions of time.
(d) If the conveyor belt is adding $5 \mathrm{~m}^{3} / \mathrm{min}$ of gravel to the pile, and the angle of the sides of the pile is 40°, at what rate is the height increasing when the base has radius 20 m ?

